CORRIGENDUM

'Gas diffusion from ascending gas bubbles', by Paul H. Leblond, J. Fluid Mech. vol. 35, 1969, p. 711.

As was pointed out to me by T. R. Hennessy of the University of Cape Town, the expressions F_c and F_d appearing at the bottom of p. 715 should be divided by 4π , and the factor $r^{\frac{4}{3}}$ removed from the latter. The coefficients β_c and β_d on p. 716 should then be divided by 4π . Equations (9a) and (10a) are unchanged but (9b) and (10b) become

$$\frac{dr}{dP} = -\left[\beta_d(P-\gamma) - \frac{2\alpha g r^3}{9\nu}\right]\!\!\left/\!\frac{2\sigma}{r^2}\right[\beta_d(P-\gamma) - \frac{2\alpha g}{9\nu}\frac{3P}{2\sigma}r^4\right], \tag{9b}$$

$$r_a(P) = \left[\frac{9\nu\beta_d}{2\alpha g}(P - \gamma)\right]^{\frac{1}{4}}, \quad r_b(P) = \left(\frac{2\sigma_b}{3P}\right)^{\frac{1}{4}} [r_a(P)]^{\frac{3}{4}}, \tag{10b}$$

and the ratio r_b/r_a for a dirty bubble is now $(2\sigma/3Pr_a)^{\frac{1}{4}}$. The values of table 1 should be modified as follows: for a clean system, r_a should be multiplied by 0·364, r_b by 0·485; for the contaminated system, $r_a = 0.428$ (r_a of table 1) $^{\frac{5}{4}}$, $r_b = 0.528$ (r_b of table 1) $^{\frac{2}{4}}$. The other results of the paper are unchanged.